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Abstracti1 

Aims: This research work investigated the best regression technique in handling multicollinearity using the Ridge, Least Absolute 

Shrinkage and Selection Operator (LASSO) and Bridge regression models in comparison to Analysis and Prediction. 

Study Design: Two sets of secondary data on Body Size and Heart Rate gotten from the Lulu Briggs Health Center, University of Port 

Harcourt were used for comparison for model fit and in handling multicollinearity between the regression techniques. Tables were used 
to present Comparisons made using MSE, RMSE, VIF, AIC and BIC for efficiency. Scatter plots were employed to show fitted regression 

models. R Software was used to perform data analysis. 

Methodology: The data were tested for the presence of multicollinearity using VIF respectively, before proceeding to apply Ridge, 
LASSO and Bridge regression techniques to solve the problem of multicollinearity. Then comparison was made in analysis and prediction 

between the regression techniques.                

Results: The results from the study show that, for analysis on body size, we found that none of the Regression Techniques handled the 
problem of multicollinearity, even though the degree of multicollinearity present in the data set reduces, with VIF values of 11.36762 for 

Ridge, 10.8042 for LASSO, and Bridge which are 10.95578, 11.24945, 12.22628 and 12.14645 respectively. For Heart Rate analysis, we 

see that all the regularized regression techniques handled the problem of multicollinearity. The results show that the Bridge regression 

technique performed better with a VIF of 1.744461 when 𝛾 = 1. Second to it was the Ridge regression with VIF of 1.914978, and lastly 

the LASSO regression with VIF of 2.184537 respectively. In comparison for best model fit, Bridge regression performed better for both 

datasets. For body size analysis, with MSE of 13.79458 when 𝛾 = 1.5, AIC of 274.4276 and BIC of 290.0586 respectively. Also for heart 

rate analysis, with MSE, AIC and BIC of 8.063168, 220.7307 and 236.3617 when 𝛾 = 0.5 respectively. 

Conclusion: It was found from this study that Bridge, LASSO and Ridge regression techniques can be used to solve the problem of 
multicollinearity and address overfitting in model building. Though, the choice of technique to be used depends on the type of data under 

consideration. 
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1. Introduction 

In many field of study, Regression is a statistical method that is used to 
determine the strength and the character of the relationship that exist between 

a dependent variable and a set of independent variables. Such relationships 

allows researchers to examine the effects variables have on each other, while 
simultaneously controlling the effects that other variables in the model may 

also have.  

 
In recent studies, regression has become a powerful machine learning 

technique used to make predictions, and hence, modelling in regression 

analysis has been used to find out to what extent a response (dependent 
variable) can be predicted by the independent variables (explanatory 

variables). Again, due to the increasing availability of data in recent years, 

regression techniques have been employed in various applications to produce 
flexible solutions to problems in various settings (Weeraratne, 2016). 

 

However, in estimating parameters of linear regression using the least square 
method, one of the assumptions made, is that the independent variables, say 

W𝑖’s are not linearly correlated. When this assumption is violated and there is 
correlation among the independent variables we say that their exist collinearity 

between the independent variables. Thus, collinearity in regression analysis 
refers to the event of two (or multiple) covariates being strongly linearly 

related. That is, one or more than one explanatory variable is determined by 

other variable. Consequently, multicollinearity becomes a problem that arises 
in multiple regression analysis when there is a strong correlation or 
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relationship between two or more explanatory variables which results in 

inaccurate estimates of the regression coefficients, inflation of the standard 
errors of the regression coefficients, deflating the partial t-tests for the 

regression coefficients, giving false, nonsignificant, p-values, and degrading 

the predictability of the model (Herawati et al. 2018). 
 

Multicollinearity can cause values of least squares estimators to be unstable 
i.e. subject to change with slight variation in the data. It also makes it difficult 

to establish the effects of each explanatory variable on the response variable. 

(Fox, 2015). Though, it is not possible to eliminate multicollinearity 
completely but the degree of multicollinearity can be reduced by adopting 

regularized regression techniques such as ridge regression, LASSO regression, 

etc. (Ranjit, 2006) [4]. Moreover, this study will explore Ridge regression, 

Bridge regression and Least Absolute Shrinkage and Selection Operator 

(LASSO) regression which performs best as a method for handling 

multicollinearity problem in multiple regression analysis. 
 

Consequently, in order to estimate parameters in a regression analysis, 

consider the case of a Simple linear regression which allows us to look at the 
linear relationship between a dependent variable and an independent variable. 

 

The model is given as, 
   

𝑣 = 0 + 1𝑤𝑖 + 𝑖            𝑖 = 1, 2, 3, …, n   (1) 
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Where 𝑣 is the dependent variable, w is the independent variable, 0 is the y-

intercept and 1 is the regression coefficient representing the change in 𝑣 with 
respect to the change in w, also called the slope.  

 

And  is the residual error which is the difference between the regression line 
(which represents our regression prediction) and the actual observation. The 

predictions made by the “best” regression line are indicated by 𝑣. Thus,  = 𝑣 

- 𝑣  

Nevertheless, under the assumption that 𝑣𝑖 ~ normal, independent and 

identical distribution (0 + 1𝑤𝑖), the Ordinary Least Square Estimation of 0, 

1 and 𝜎2 are given as follows: 
 

̂0 = 𝑣̅ - ̂1𝑤̅     (2) 
 

̂1 = 
∑ (𝑣𝑖− 𝑣̅)𝑛

𝑖=1 (𝑤𝑖− 𝑤̅)

∑ (𝑤𝑖 − 𝑤̅)2𝑛
𝑖=1

      for ∑ (𝑤𝑖 − 𝑤̅)2𝑛
𝑖=1  ≠ 0   

   

  ≡ 
𝑛 ∑ 𝑤𝑖𝑣𝑖− (∑ 𝑤𝑖

𝑛
𝑖=1 )𝑛

𝑖=1 (∑ 𝑣𝑖
𝑛
𝑖=1 )

𝑛 ∑ 𝑤𝑖
2− (∑ 𝑤𝑖)2

   (3) 

 

𝜎2 = 
1

𝑛−2
 ∑ (𝑣𝑖 − ̂0 − ̂1𝑤𝑖)

2𝑛
𝑖=1     (4) 

 

Where 𝜎2 is the variance and the residual error 2 =  (𝑣𝑖 − ̂0 − ̂1𝑤𝑖)
2
 

 
Nevertheless, when there is more than one independent variable, the 

regression becomes a Multiple Linear Regression. Thus, a multiple linear 

regression model and its estimation using Ordinary Least Square method 
allows one to estimate the relation between a dependent variable and a set of 

explanatory variables. 

 
Thus, multiple linear regression is given as, 

 

v = 0 + 1𝑤1 + 2𝑤2 + . . . + 𝑛𝑤𝑛 + ɛ    (5)
  
 

Where 𝑤1, 𝑤2, 𝑤𝑛 are the independent variables, 0 is the y-intercept, all other 

𝑛’s could represent other parameters.  

OLS estimation for two predicator variables 1 and 2 from a given dataset, 
are given by: 

 

 0 = 𝑣 - 1𝑤̅1 - 2𝑤̅2    (6) 
 

 1 = 
(∑ 𝑤2

2)(∑ 𝑤1𝑣) − (∑ 𝑤1𝑤2)(∑ 𝑤2𝑣) 

(∑ 𝑤1
2)(∑ 𝑤2

2) − (∑ 𝑤1𝑤2)2
   (7) 

 

 2 = 
(∑ 𝑤1

2)(∑ 𝑤2𝑣) − (∑ 𝑤1𝑤2)(∑ 𝑤1𝑣) 

(∑ 𝑤1
2)(∑ 𝑤2

2) − (∑ 𝑤1𝑤2)2
   (8) 

 

For multiple regression, we minimize sum of square error (SSE) to obtain the 

estimates of ’s.  
 

Thus SSE is given by, 

 

2 = ∑ (𝑣𝑖 − ̂0 −  ∑ ̂𝑗𝑤𝑖𝑗
𝑝
𝑗=1 )

2𝑛
𝑖=1    (9) 

 

When SSE is small it implies low variance and when large – high variance of 
estimates. SSE measures the discrepancies between the data and the estimation 

model. 

 

Therefore, the above estimates of regression parameters are used in regression 

analysis for model fitting and prediction of future events. Thus, the 

understanding of the behavior of explanatory variables from best fitted 
regression models can help manage and improve the predictability and 

forecasting of the response variables, since better fitted models can help 

increase the accuracy of predictions. However, this study focuses on 
predicting body size and heart rate from known determining factors, using the 

Ridge, Bridge and LASSO regression techniques. 

 
The understanding of LASSO, Bridge and Ridge regression techniques 

informs how best to solve the problem of multicollinearity and address 

overfitting in model building. Also, the use of better fitted models can help 
interpret analysis on data sets and improve performance of estimates of 

regression coefficients. It is interesting to know that, these three types of 

regression models to be considered makes use of a regularization technique to 
solve the problem of multicollinearity. 

1.1 Regularization 

Regularization is a technique of adding a penalty to certain models which 

shrinks the coefficient estimates of the model towards zero in order to 

minimize error. The regularization techniques often allow reducing the 
estimated variance at the cost of introducing a small bias, as a result, the 

prediction accuracy increases. (Melkumovaa and Shatskikhb, 2017).  

 

1.2 Fitted Models 

Fitted regression models can be described as: Under-fitting, Overfitting or 

Best fitting. Nevertheless, Training data points as well as Test data points are 
used in predicting the best fit line. Under fitting occurs as a result of high bias 

and high variance from the fitted line, also both the training data and test data 

have low accuracy. Overfitting occurs as a result of low bias and high variance 
from the fitted line, but the training data have high accuracy and test data have 

low accuracy. However, Best fitting occurs as a result of low bias and low 

variance from the fitted line, which is the case for a generalized model. Note 
that Bias is the error of the training data and Variance is the error of the test 

data. However, in analytical work, the comparison of data, or sets of data, is 

important to quantify accuracy (bias) and precision. 
 

1.3 Literature Review 

Modern Regression Methods such as the Ridge, LASSO and Bridge 

regressions makes use of regularization techniques in order to deal with Severe 

Multicollinearity (Herawati et al. 2018), that is present in a data set. These 

modern regression models thus, extend the OLS regression. In overall, the 
advantages of such regression techniques is that they can reduce the variance 

by paying the price of an increasing bias. This can improve the prediction 
accuracy of a model (Frank and Matthias 2019). On like the Ridge regression 

that only solve the problem of collinearity in the data set (Dorugade 2014), the 

LASSO simultaneously estimates and selects the coefficients of a given model 
(Ehsanes et al. 2019). On the other hand, the bridge estimators can be used to 

distinguish between covariates whose coefficients are zero and covariates 

whose coefficients are nonzero, which is a useful alternative to the existing 
methods for variable selection and parameter estimation (Jian et al. 2006). 

 

Now consider some previous research works carried out on different 
regression models, in model comparison, prediction and handling 

multicollinearity.  

 
Abhishek (2021) stated in his work that Supervised Learning is a prominent 

task of machine learning which maps inputs to corresponding outputs. And 

that Regression is one such supervised learning technique that models a 
relationship between independent and dependent variables. His study 

concluded that, the choice of regression algorithm to be used should be based 

on the type of data being considered, the distribution of the data and the 
parameters under considerations. 

 

Serkan and Mehmet (2016) presented a study, comparing the regression 
models explaining the profitability base on financial data. They have made use 

of and evaluated multiple linear regression and logistic regression. From their 

study, they concluded that the multiple linear regression model returned an  𝑅2 

value of 0.912 and Logistic regression returned an 𝑅2 value of 0.47 and 
multiple linear regression gave a better performance. They concluded that the 

optimal model must be selected based on the purpose of the analysis.  
 

Acharya et al. (2019) provided a comparative study of regression models to 

predict graduate admissions. They have compared different regression 
algorithms such as Linear Regression, Support Vector Regression (SVR), 

Decision Trees Regression, and Random Forest Regression, for the given 

profile of the student. To select the best model, they have computed the error 

functions for these models and compared their performance. They concluded 

that linear regression performed best on their dataset with a low Mean Squared 

Error value and a high 𝑅2 value.  
 
Cheolwoo and Young (2011 carried out a research work on Bridge regression. 

Their study shows that bridge regression adaptively selects the penalty order 

from data and produces flexible solutions in various settings. The numerical 
study shows that the proposed bridge estimators are a robust choice in various 

circumstances compared to other penalized regression methods such as the 

ridge, lasso, and elastic net and it shows superior performances in comparisons 
with other existing methods.  

 

Frank and Matthias (2019) in there research paper, surveyed modern 
regression models that extend OLS regression. They discussed the 

regularization terms responsible for inducing coefficient shrinkage and 

variable selection leading to improved performance metrics of modern 
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regression models. A common feature of all extensions of OLS regression and 
ridge regression is that these models perform variable selection (coefficient 

shrinkage to zero). This allows to obtain interpretable models because the 

smaller the number of variables in a model, the easier it is to find plausible 
explanations. Considering this, the adaptive LASSO has the most satisfying 

properties because it possesses the oracle property, making it capable to 

identify only the coefficients that are non-zero in the true model. 
 

Jian et al. (2006) studied the asymptotic properties of bridge estimators in 

sparse, high- dimensional, linear regression models when the number of 
covariates increases to infinity with the sample size. Their work was 

particularly interested in the use of bridge estimators to distinguish between 

covariates whose coefficients are zero and covariates whose coefficients are 
nonzero. The results show that under appropriate conditions, bridge estimators 

correctly select covariates with nonzero coefficients with probability 

converging to one and that the estimators of nonzero coefficients have the 
same asymptotic distribution that they would have if the zero coefficients were 

known in advance. Thus, the bridge estimators have an oracle property.  

 
Noora (2020) carried out a research on detecting multicollinearity in 

regression analysis. She discusses on the three primary techniques for 

detecting the multicollinearity using the questionnaire survey data on 

customer satisfaction, which were: the correlation coefficients and the 

variance inflation factor, and the eigenvalue method. It was observed that the 

product attractiveness is more rational cause for the customer satisfaction than 
other predictors. The study also concluded that advanced regression 

procedures such as principal components regression, weighted regression, and 
ridge regression method can be used to determine the presence of 

multicollinearity.  

 
Dorugade (2014) introduced the ridge regression estimator as an alternative to 

the ordinary least squares estimator in the presence of multicollinearity. In his 

article, he introduce alternative ordinary and generalized ridge estimators and 
study their performance by means of simulation techniques where he 

compared their evaluated estimators. The results indicates that under certain 

conditions the performance of proposed ridge parameters is better than OLS 
used in the simulation study. Hence the study concluded that the performance 

of the proposed estimators is satisfactory over the other estimators in the 

presence of multicollinearity. 
 

Jamal (2017) research work focused on multicollinearity, reasons and 

consequences on the reliability of regression models. He concluded that 
Multicollinearity is a serious problem that should be resolved before starting 

the process of data modeling. It is highly recommended that all regression 

analysis assumption should be met as they contribute to accurate conclusions 
and helps to make inferences on the population.  

 

Nevertheless, it is shown above that regression techniques have gained more 
popularity in modern times. Studies in regression analysis had been applied in 

various field of study. For instance, Ridge regression have been applied in 

Genetic studies (Arashi et al. 2021). Due to ‘‘the advancement of technology, 
analysis of large-scale data of gene expression is feasible and has become very 

popular in the era of machine learning’’. Also in agriculture, Ridge regression 

have been proposed to predict wheat production (Nasir and Rind 2007) with 
the use of fertilizers and manure to improve wheat yield. The LASSO have 

also been used to investigate changes in in weather conditions (Bappa et al. 

2018) that impact crop yield and food security. Also, in machine learning, 
combination of regression models (Thomas et al. 2015) could be used together 

to yield a lower total error of prediction, depending on the requirements of the 

user. 

 

2. Methodology 
This study compared the Bridge Regression model, Ridge Regression model 
and LASSO Regression model in order to determine the best fit regression 

technique to produce the better performance. The regression analysis was 

based on prediction on Body Size and Heart Rate. Thus, from the study, the 
relationship among the response variable Body size (or Heart rate) and its 

determining factors using regression techniques can help explain the 

predictability of future occurrences accurately. 
 

For the purpose of this study, two sets of secondary data gotten from the Lulu 

Briggs Health Center, University of Port Harcourt was used for comparison 
and data analysis. First, data on Body Size, Weight, Body Fat, Height and Age 

were used for the study. Secondly, data on Heart Rate, Body Temperature, 

Blood Pressure, Blood Volume and Cholesterol Level were also used for the 
study.  

The data used for the study where tested for the presence of multicollinearity 
using VIF respectively, before proceeding to apply Ridge, LASSO and Bridge 

regression techniques to solve the problem of multicollinearity. 

 
R software was used to perform data analysis on Ridge, LASSO and Bridge 

regressions. Comparison for best model fit between Ridge, Bridge and LASSO 

regression models was made using MSE, RMSE, 𝑅2, AIC and BIC from the 
regression analysis. Scatter plots were employed to show fitted regression 
models on Actual values against Predicted values. 

 

The R Software package used in analyzing Ridge and LASSO regression is 
the ‘glmnet’ package. Whereas, the R Software package used in analyzing the 

Bridge regression is the ‘rbridge’ package. The data sets were fitted for Ridge, 

Bridge and LASSO regression models to determine the best regression 
technique in handling multicollinearity. 

 

2.1 Ridge Regression 

In solving system of simple linear equation using ordinary least square (OLS) 

which leads to non-linear normal equations, it depends upon a reduction of the 

residuals to linear form by first order Taylor approximations (Lavenberg, 
1944). If the least square procedure performed with these linear 

approximations, yields new values for the parameters which are not 

sufficiently close to the initial values, then the neglect of second and higher 
order terms may invalidate the process and may actually  give rise to larger 

sum of squares of the residuals, which does not corresponds to the initial 

solution. This failure of the OLS to improve the initial solution has frequently 
been encountered in various field of study (Lavenberg, 1944). Moreover, when 

multicollinearity exists between the independent variables, the OLS method 

becomes ineffective for computing the parameter estimates. Hence, Hoerl A. 
E. proposes the Ridge Regression estimation in 1962. 

 

The Ridge Regression (RR) becomes a technique for analyzing multiple 
regression data that suffer from multicollinearity. By adding a degree of bias 

to the regression estimates, RR reduces the standard errors and obtains more 

accurate regression coefficients estimation than the OLS. 
 

The ridge regression parameter is estimated by minimizing the sum square of 

errors which added a constraints on squares that shrink the coefficient close to 
zero. Ridge regression penalizes those features that have higher slopes that is 

we add a penalty to the square of the magnitude of coefficients, to reduce the 

cost function (Abhishek, 2021). 

 

For the multiple regression model, 

  

v = 0+ 1𝑤1+ 2𝑤2 + 3𝑤3 + 4𝑤4 +𝜀   (10) 
 

Ridge regression minimizes 

2 + (1
2 + 2

2 + 3
2 + 4

2)    > 0 (11) 

 

Where  is the ridge regression penalty that controls the penalization.  is 

determined by cross validation and the parameters are scaled by their 

measurements. 
 

Hence, Ridge regression model can be stated as adding a regularization term 

to the multiple regression model 
 

v = 0+ 1𝑤1+ 2𝑤2 + 3𝑤3 + 4𝑤4 +𝜀 + ∑(1
2 + 2

2 + 3
2 + 4

2)

   > 0,   ∑ 𝑖
2𝑝

𝑖=1  ≤ t      (12) 

  

where ∑(1
2 + 2

2 + 3
2 + 4

2) is the regularization term. This 

regularization term adds a penalty to the multiple regression model which 
minimizes the SSE. Thus SSE is expressed as, 

 

 2 =  (𝑣 − 𝑣)2 + ∑(1
2 + 2

2 + 3
2 + 4

2) 

  > 0     (13) 

where  is the penalty, ∑ 𝑖
2𝑝

𝑖=1 is the slopes or magnitude of the coefficients, 

t controls the amount of shrinkage. 𝑤1, 𝑤2, 𝑤3 and 𝑤4 are independent 
variables representing weight, body fat, height and age (or body temperature, 

blood pressure, blood volume and cholesterol level) used to predict the 

response variable v represented by body size (or heart rate). 
 

Hence, Ridge regression helps reduce variance by making the predictions less 

sensitive to training data. This is done by adding the ridge regression penalty 
to the parameter that must be minimized. This penalty term penalizes the size 

of coefficient – it reduces the coefficients toward zero, but never all the way 
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to zero. Ridge regression penalty would have all the parameters squared, 
except for the y-intercept. Moreover, Ridge regression is better when there are 

many features that have importance. 

 

2.2 LASSO Regression 

Robert Tibshirani in 1996 proposes a new method for estimation in linear 

models. Since the Ridge regression is a continuous process that only shrinks 
coefficients but it does not set any coefficients to 0 and hence does not give an 

easily interpretable model. Thus the new technique - Least Absolute Shrinkage 

and Selection Operator (LASSO), shrinks some coefficients and sets others to 
0, and hence tries to retain the good features of both subset selection and ridge 

regression. The LASSO solves the 𝑙1 - penalized regression problem of finding 

 = {𝑗} to minimize  ∑ (𝑣𝑖 − ∑ 𝑤𝑖𝑗𝑗𝑗 )
2𝑛

𝑖=1  +  ∑ |𝑗|
𝑝
𝑗=1   

 
This is equivalent to minimizing the sum of squares with a constraint of the 

form ∑|𝑗| ≤ t. It is similar to ridge regression, which has constraint ∑ 2
𝑗𝑗  ≤ 

t. If we consider a more general penalty of the form (∑ γ
𝑗

𝑝
𝑗=1 )

1

γ, then the lasso 

uses 𝛾 = 1 and ridge regression has 𝛾 = 2 (Tibshirani, 2011). 
 

Techniques, such as Least Absolute Shrinkage and Selection Operator 
(LASSO) is also very common to overcome the problem of multicollinearity. 

LASSO regression, unlike Ridge regression, results in a model where some 

coefficient estimates are exactly equal to zero when  (regularization 

parameter) is large. That is, LASSO regression will keep the correlated feature 

with higher coefficients but keep out lower coefficients that are nearly zero. 
In other words, the LASSO regularization additionally performs variable 

selection which makes the model easier to interpret (Melkumovaa and 

Shatskikhb, 2017). 
  

Nevertheless, the aim of using Lasso regression is somewhat similar to that of 

Ridge regression that is to reduce overfitting. Additionally, Lasso regression 
also serves the purpose of feature selection. Slope values that tend to zero will 

be removed meaning those feature that are removed are not important for 

predicting the line of best fit, since they are insignificant. 
For the multiple regression model, 

  

v = 0+ 1𝑤1+ 2𝑤2 + 3𝑤3 + 3𝑤4 +𝜀   (14) 
 

LASSO regression minimizes   

2 + ∑|1| + |2| + |3| + |4|   > 0  (15) 

 

LASSO regression model can be stated as adding a regularization term to the 
multiple regression model 

v = 0+ 1𝑤1+ 2𝑤2 + 3𝑤3 + 4𝑤4 +𝜀 + ∑|1| + |2| + |3| + |4|

      > 0,   ∑ |𝑘|𝑞
𝑘=1  ≤ t       (16) 

 

where ∑|1| + |2| + |3| + |4| is the regularization term. This 

regularization term adds a penalty to the multiple regression model which 

minimizes the SSE. Thus SSE is expressed as, 

 2 =  (𝑣 − 𝑣)2 + ∑|1| + |2| + |3| + |4| 
  > 0     (17) 

 
Where t is the quality that controls the amount of shrinkage in the estimation 

of coefficients of LASSO with t ≥ 0 
 

LASSO regression will be better when there are a few important features in 

the model because more information is lost, since unimportant features are 
completely removed. LASSO regression can be applied in financial analysis 

which is used for variable selection, evaluation and interpretation of financial 
data with other information in investment and financing decision-making 

process (Serkan and Mehmet, 2016).  

 

2.3 Bridge Regression 

Frank and Friedman (1993) introduced the Bridge Regression which 

minimizes the residual sum of squares, subject to a constraint ∑|𝛽𝑗| 𝛾 ≤ t with 

𝛾 ≥ 0. Overall, bridge regression achieves small MSE and performs well in 

estimation and predictions compared to the LASSO and the Ridge for linear 
regression models in general.  

 

Bridge regression estimator generalizes both ridge regression and LASSO 

regression estimators, because it minimizes the SSE with a  penalty. Thus, 

the bridge regression method provides a way of combining parameter 

estimation and variable selection in a single minimization problem. The bridge 
estimator can effectively identify large and moderate nonzero covariate effects 

and zero covariate effects. However, it penalizes small coefficient values 
excessively.  

 

Moreover, when it comes to high-dimensional data, the bridge estimator with 

0 < 𝛾 ≤ 1 becomes a useful alternative to the existing methods for variable 

selection and parameter estimation. For the case 0 < 𝛾 ≤ 1, the resulting 

estimator will be nearly unbiased for large values of the unknown parameter 

. Consequently, when 𝛾 > 1, the bridge regression method shrinks the 

regression coefficients, but does not provide variable selection. For when 0 < 

𝛾 < 1 the objective function is non-convex and the singularity at 𝛽 = 0 makes 
it difficult to minimize the penalized objective function. Thus for larger values 

of 𝛾, the shrinkage increases with the magnitude of the regression parameters 
being estimated (Olcay, 2015). 
 

Hence, for the multiple regression model, 

  

v = 0+ 1𝑤1+ 2𝑤2 + 3𝑤3 + 3𝑤4  +𝜀   

   (18) 
Bridge regression minimizes 

2 + (1
𝛾 + 2

𝛾 + 3
𝛾 + 4

𝛾)   > 0, 𝛾 > 0 

   (19) 
Bridge regression model can be stated as adding a regularization term to the 

multiple regression model 

v = 0+ 1𝑤1+ 2𝑤2 + 3𝑤3 + 4𝑤4 +𝜀 + (1
𝛾 + 2

𝛾 + 3
𝛾 + 4

𝛾) 

  > 0, 0 < 𝛾 ≤ 2, 

∑ |𝑗|
𝛾𝑟

𝑗=1  ≤ q     

    (20)      where (1
𝛾 +

2
𝛾 + 3

𝛾 + 4
𝛾) is the regularization term. This regularization term adds a 

penalty to the multiple regression model which minimizes the SSE. Thus SSE 

is expressed as, 
 

2 =  (𝑣 − 𝑣)2 + (1
𝛾 + 2

𝛾 + 3
𝛾 + 4

𝛾)   > 0, 0 < 𝛾 < 2

  (21) 

Where q is a positive parameter representing the tuning constant that controls 

the amount of shrinkage. 𝛾 is the shrinkage parameter. 
 

Also, the optimal 𝛾 selection will increase the efficiency of the model. 

Moreover, by setting 𝛾 = 0, 𝛾 = 1 and 𝛾 = 2 in optimization problem we obtain 
the least-squares regression model, the lasso regression model, and the ridge 

regression model respectively (Delara et al. 2020).  

 
The Bridge estimator correctly identifies zero coefficients with higher 

probability than the LASSO and Ridge estimators. It performs well in terms 

of predictive mean square errors. Bridge regression is known to possess many 
desirable statistical properties such as oracle, sparsity, and unbiasedness. 

However, a disadvantage of bridge is that it lacks a systematic approach to 

inference, reducing its flexibility in practical applications. 

 

3. Results and Discussion 
 

3.1 Multiple Regression Analysis Results 

From the multiple regression analysis results below for body size, we see that 

‘weight, body fat and height’ have high VIF values of 37.13, 60.20 and 68.38 
respectively, indicating the presence of high multicollinearity among these 

independent variables. Thus, the strong correlation between those independent 

variables means that they can be predicted by other independent variables in 
the data set. Similarly, the multiple regression analysis results for heart rate 

shows that ‘blood pressure, blood volume and cholesterol level’ have high VIF 

values of 27.44, 36.36 and 46.28 respectively, indicating the presence of high 

multicollinearity among those explanatory variables. 

Regression Equation for Body Size 

Body 
Size 

= 68.6 + 0.234 Weight + 1.221 Body Fat + 0.018 Height 
- 1.015 Age 

Coefficients 

Term Coef SE Coef T-Value P-Value VIF 

Constant 68.6 47.0 1.46 0.148   

Weight 0.234 0.145 1.61 0.110 37.13 

Body Fat 1.221 0.337 3.62 0.000 60.20 

Height 0.018 0.849 0.02 0.984 68.38 

Age -1.015 0.302 -3.36 0.001 4.18 
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Model Summary 

S R-sq R-sq(adj) R-sq(pred) 

3.78317 91.94% 91.60% 90.74% 

Regression Equation for Heart Rate 

Heart 
Rate 

= 293.0 + 0.268 Body Temperature - 1.056 Blood Pressure 
- 1.442 Blood Volume 

- 0.2821 Cholesterol Level 

Coefficients 

Term Coef SE Coef T-Value P-Value VIF 

Constant 293.0 48.7 6.02 0.000   

Body Temperature 0.268 0.276 0.97 0.333 1.28 

Blood Pressure -1.056 0.394 -2.68 0.009 27.44 

Blood Volume -1.442 0.342 -4.21 0.000 36.36 

Cholesterol Level -0.2821 0.0939 -3.00 0.003 46.28 

Model Summary 

S R-sq R-sq(adj) R-sq(pred) 

2.91333 54.44% 52.52% 46.29% 

From the multiple analysis results above, it is known that there is presence of 

multicollinearity among the explanatory variables. Therefore, we then proceed 

to use Ridge, LASSO and Bridge regression analysis techniques to solve the 
problem of multicollinearity among these data sets. 

 

3.2 Data Analysis and Results for Body Size 

The Table 1 below shows the comparative analysis results of Ridge regression, 

LASSO regression and Bridge regression for Body Size, in testing for the best 

model fit and in handling the problem of multicollinearity. 
 

3.2.1 Scatter Plot for Fitted Regression models on Body Size 

Figure 1 shows that the data points are linear and close to the line of best fit 
indicating less variation, except for few data points which are far away from 

the line of best fit which may be outliers. The data points which are closer to 

the best fit line indicates a strong positive correlation or relationship between 
the actual values and predicted values. Figure 2 also indicates a strong positive 

correlation between the actual values and the predicted values. The data points 

are close to the best fit line and linear. 
 

 
Figure 1: Ridge regression plot for Actual values against Predicted values 

 
Figure 2: LASSO regression plot for Actual values against Predicted values 
 

Figure 3 for Bridge regression when 𝛾 = 1, shows that the data points are close 

to the best fit line, but with slight variation in some data points which are 

outliers that stands far from the line of best fit. This plot indicates a strong 

positive correlation between the actual data points and the predicted data 

points. This similar to figure 4 when 𝛾 = 2. 

 
Figure 3: Bridge regression plot for Actual values against Predicted values 

when 𝛾 = 1 

 
Figure 4: Bridge regression plot for Actual values against Predicted values 

when 𝛾 = 2. 
 

3.3 Data Analysis and Results for Heart Rate 
The Table 2 below shows the comparative analysis results of Ridge regression, 
LASSO regression and Bridge regression for Heart Rate, in testing for the best 

model fit and in handling the problem of multicollinearity. 

 
 

 

 

https://doi.org/10.54117/iimj.v3i1.5


Available: https://doi.org/10.54117/iimj.v3i1.5          Research article 

 

6 

  

Table 1: Comparative Results for Body Size, Weight, Body Fat, Height and Age. 

 

Analysis 

Criterion 

Regression Techniques 

 

Ridge 

 

LASSO 

Bridge 

𝛾 = 0.5 𝛾 = 1 𝛾 = 1.5 𝛾 = 2 

Best   value 1.238038 0.4770814 151.1523 70.58116 6.693683 2.215357 

MSE 14.83657 15.61026 15.39428 14.99242 13.79458 13.88525 

RMSE 3.851827 3.950983 3.923555 3.872004 3.714106 3.726291 

𝑹𝟐 0.9120308 0.9074434 0.908724 0.9111067 0.918209 0.9176714 

𝑹𝟐
𝒂𝒅𝒋 0.9083268 0.9035463 0.9048808 0.9073639 0.9147651 0.9142049 

AIC 281.7095 286.7929 285.3996 282.7545 274.4276 275.0827 

BIC 297.3405 302.4239 301.0306 298.3855 290.0586 290.7137 

VIF 11.36762 10.8042 10.95578 11.24945 12.22628 12.14645 

 
Table 2: Comparative Results for Heart Rate, Body Temperature, Blood Pressure, Blood Volume and Cholesterol Level. 

 

 

Analysis 

Criterion 

Regression Techniques 

 

Ridge 

 

LASSO 

Bridge 

𝛾 = 0.5 𝛾 = 1 𝛾 = 1.5 𝛾 = 2 

Best             value 0.2849412 0.01556428 0.5 151.1523 0.05 0.2413889 

MSE 9.241047 8.100754 8.063168 10.14433 8.063249 8.089838 

RMSE 3.039909 2.846182 2.839572 3.185017 2.839586 2.844264 

𝑹𝟐 0.4778007 0.5422372 0.5443611 0.4267572 0.5443566 0.542854 

𝑹𝟐
𝒂𝒅𝒋 0.4558134 0.522963 0.5251763 0.4026206 0.5251716 0.5236058 

AIC 234.3655 221.1957 220.7307 243.6915 220.7317 221.0609 

BIC 249.9965 236.8267 236.3617 259.3226 236.3627 236.6919 

VIF 1.914978 2.184537 2.19472 1.744461 2.194699 2.187485 

 

3.3.1 Scatter Plot for Fitted Regression models on Heart Rate 

Figure 5 shows a weak, nonlinear, positive correlation between the actual 

values and the predicted values. More data points stands far from the fitted 
line which may be outliers, thus indicating some variation in the model. In 

Figure 6, we see a moderate, positive, correlation with two clusters of actual 

data points against the predicted data points. We also see the presence of 
outliers in the plot. 

 
Figure 5: Ridge regression plot for Actual values against Predicted values 

Figure 6: LASSO regression plot for Actual values against Predicted values  

 

Figure 7 is similar to the Bridge regression plot in Figure 5 when 𝛾 = 1. The 
plot indicates a weak, nonlinear, positive correlation between the actual data 

points and the predicted data values. Again, Figure 8 is similar to the LASSO 

plot in Figure 6, when the Bridge shrinkage parameter 𝛾 = 2. We see from the 
plot two clusters of the data points and a moderate, positive correlation 

between the actual data points and the predicted data points. 
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Figure 7: Bridge regression plot for Actual values against Predicted values 

when 𝛾 = 1 

 
Figure 8: Bridge regression plot for Actual values against Predicted values 

when 𝛾 = 2 
 

Discussion of Findings 
Based on our numerical results, from Table 1, when comparing the best 
regression technique to solve the problem of multicollinearity between Ridge, 

LASSO, and Bridge regressions, we see that none of the Regression 

Techniques handled the problem of multicollinearity, even though the degree 
of multicollinearity in the data set reduces (Ranjit, 2006; Jong, 2019) with VIF 

values of 11.36762 for Ridge, 10.8042 for LASSO, and Bridge which are 

10.95578, 11.24945, 12.22628 and 12.14645 respectively. This is in contrast 
with some studies done on regularized techniques, (Herawati et al. 2018; 

Cheolwoo and Young, 2011) which result to further studies or modifications 

on existing regularized regression techniques which was the case of (Frank 
and Matthias, 2019; Olcay, 2015; Himel and Nengjun, 2018).  

 

Also in our comparison for best model fit, Bridge regression performed better 

with MSE of 13.79458 when 𝛾 = 1.5, AIC of 274.4276 and BIC of 290.0586 

respectively. This is in line with Jian et al. (2006) that the Bridge estimator 

performs well in terms of predictive mean square errors. Moreover, about 92% 

of the variation is explained in the model. Thus producing more accurate 

results for predicting Body Size using Weight, Body Fat, Height and Age. 
Ridge regression came second with MSE of 14.83657, AIC of 281.7095 and 

BIC of 297.3405 respectively. Also, about 91% of variation is explained in 

our ridge model. From the 𝑅2 for LASSO regression, we also have about 92% 

of our variation explained in the model with MSE of 15.61026. 
 

Consequently, from Table 2, in comparing Ridge, LASSO, and Bridge 

regression techniques in handling the problem of multicollinearity, we see that 
all the regularized regression techniques handled the problem of 

multicollinearity, which is why studies  in regularized regressions have 

become popular in recent years (Dorugade, 2014; Jian et al., 2006; Sarojamma 
and AnilKumar, 2018; Cheolwoo and Young, 2011). We see that the Bridge 

regression technique performed better with VIF of 1.744461 when 𝛾 = 1 
respectively. Second to it was the Ridge regression with VIF of 1.914978, and 

lastly the LASSO regression with VIF of 2.184537 respectively. The findings 
of all three techniques used to solve multicollinearity where quite similar to 

Gursev (2020).  

 
In comparing best model fit, Bridge regression performed better with MSE, 

AIC and BIC of 8.063168, 220.7307 and 236.3617 when 𝛾 = 0.5 respectively. 
Next to it is the Ridge regression with MSE, AIC and BIC of 9.241047, 

234.3655 and 249.9965 respectively. 𝑅2 for Bridge regression, shows that 
about 54% of our variation was explained in the model. Thus Bridge produced 

more accurate results for predicting Heart Rate using Body Temperature, 
Blood Pressure, Blood Volume and Cholesterol Level. 

 

Nevertheless, based on the two sets of data used in this study, we notice that 
from Table 1, we see that none of regularized regression techniques solved the 

problem of multicollinearity which is in contrast to Table 2 where all three 

regression techniques successfully handled the problem of multicollinearity. 
Meaning that the choice of regression technique to be used also depends on 

the type of data to be considered and the parameters under consideration which 

is also similar to the findings of Abhishek, (2021). However, in both data sets 
that where analyzed, the numerical results show that Bridge regression wins 

our comparison, thus showing superior performance to Ridge regression and 

LASSO regression which was a similar conclusion from the study done by 

Cheolwoo and Young (2011). 

 

Conclusion 
From the study, we have been able to show the best regression technique that 

can be used in handling multicollinearity that exist in multiple regression 

analysis. Though the choice of technique to be used should be based on the 
type of data being considered. Consequently, Bridge regression wins our 

comparison for being a better technique in handling the problem of 

multicollinearity. When comparing which regression model produced the best 
model fit for better prediction and accurate results, Bridge regression 

performed better for both sets of data used. 

 
Granted, access to the medical records for the two sets of data used for the 

study was granted after approval and ethical clearance from the relevant 

authority of the Health Center. The relationship among Body size or Heart rate 
and their determining factors using regression techniques can help explain the 

predictability of future occurrences accurately. 

 
The understanding of Ridge regression, LASSO regression and Bridge 

regression techniques can inform how best they can be used by Statisticians 

and other Researchers to solve the problem of multicollinearity and in 
addressing over fitting in model building. Nevertheless, the use of Bridge 

regression, Ridge regression and LASSO regression can help interpret analysis 

on data sets and improve performance of estimates of regression coefficients 
and predict possible response behaviors. 
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References to Equations 
Equation 1, Linear regression model. 

Equation 2, Formula for estimation of the parameter 0 for one predicator 
variable. 

Equation 3, Formula for estimation of the parameter 1 for one predicator 
variable. 

Equation 4, Variance for Linear regression model. 

Equation 5, Multiple regression model. 

Equation 6, Formula for estimation of the parameter 0 for two predicator 
variables. 

Equation 7, Formula for estimation of the parameter 1 for two predicator 
variables. 

Equation 8, Formula for estimation of the parameter 2 for two predicator 

variables. 
Equation 9, Sum of Square Error. 

Equation 10, Multiple regression model for four predicator variables. 

Equation 11, Ridge regression regularized error term for four predicator 
variables. 

Equation 12, Ridge regression model. 

Equation 13, Sum of Squares for Ridge regression. 
Equation 14, See equation 10 above. 

Equation 15, LASSO regression regularized error term for four predicator 

variables. 
Equation 16, LASSO regression model. 

Equation 17, Sum of Squares for LASSO regression. 

Equation 18, See equation 10 above. 

Equation 19, Bridge regression regularized error term for four predicator 

variables. 

Equation 20, Bridge regression model. 
Equation 21, Sum of Squares for Bridge regression.  
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